Mac Malware Analysis

MARIST

Machine Learning

The algorithm we chose for our project is K-Nearest-Neighbors (KNN).
Since all we are trying to achieve is to classify whether or not specific
points in our data frame are “Malicious” or “Non-malicious”, we can
use this algorithm to do so.

Frederick Berberich, Daniella Boulos, Julianna Russo, Christopher Drisdelle

Data Collection

We used a standardized data collection process to ensure that we
collected data without impacting other devices on the network, the data
was able to be cleansed for the machine learning model, and manual
malware analysis could be conducted. The steps we took were:

Overview

The Mac Malware project focuses on malware, more specifically
Backdoor (Trojan) viruses and the minimal ability to detect them on
Apple computers.

Throughout the project, we ran samples of Backdoor malware which
were then collected and analyzed using SpriteTree. We have developed
a machine learning (ML) model to differentiate between benign and
malicious files, identitying logs that may pose a device risk. This is done
by feeding the ML algorithm small amounts of data and testing it to see
if it can predict whether or not the file 1s malicious.

Test Bed

We created a secure testbed for data collection and analysis that
consists of an Apple Mac Mini 2018 with macOS Sonoma, a Ubiquiti
Dream Machine Pro Firewall, and various analytical software. This test
bed allows for the deployment of various MacOS Backdoors so that
malicious logs can be collected once the malware 1s executed.

Predictions vs. Actual Labels - Optimal K = 20 Counts of Malicious and Non-Malicious Data

1. Download files: We downloaded a variety of Backdoor malware I
from the Objective-See website to run and observe how they -
alfected the system. -

2. Run malware: After the malware was downloaded, we sandboxed
the environment by deep freezing the Mac Mini before running the
malware samples and then restarting the computer before I |
continuing onto a new sample. The data that we collected was o N
automatically documented in .JSON files using EslL.ogger.

3. Analyzing samples: Once we ran the malware samples, we
analyzed them in SpriteTree, which allowed us to determine the
similarities and differences between the different malware samples.

4. Converting to .CSV: The files were recorded in .JSON files and
were unreadable so, using a Python script, we converted them to
.CSV files to allow us to observe and clean the data. predictions vs, Actusl Labels - Optimal K = 20

5. Cleaning data: A lot of null values were found in the CSV after
converting {rom json to csv, which would not allow the machine

learning algorithm to be executed. Therefore, after studying the .-
different values, we narrowed down the data {from over 1,000 .

50000 A

40000 A

Actual

30000 A

Count

Non-Malicious Malicious

Our model accuracy is 98.87% which sounds too good to be true BUT it
is (sort of). Our model guessed a 100% of the “non-malicious” data and
81% correct on the malicious. This is good but looking at the data, we
found that we have a data bias, which can greatly throw off out model
so we decided to do another run but with a better split of data.

Counts of Malicious and Non-Malicious Data

Software used on the Mac Malware Project are:
e [islL.ogger
e Jupvyter Notebook
e SpriteTree
e Jupiter Notebook
e Sci-Kit Learn

2500 A

2000 A

Actual
Count

columns to 8o columns. -

Predicted 0-

EsLogger was used to collect all the files and folders edited or created {rom
malware and converted this data into .JSON files. We then converted this data
into .CSV files. Afterwards, we analyzed these files using SpriteTree.

Currently, we are going through the data and determining whether or
not certain columns repeat with similar data sets. If this is the case,
then we would need to trim the data even more.

Malicious

Non-Malicious

When splitting the data 50/50, our malicious prediction accuracy went
up but our overall accuracy went down. This shows that hopefully with

NE0=ENS=800P68807P9-8%0F

Lo T o T = ¥ 1 B L S R

[TR N T N5 T Y N O V5 A A Y (e S A A T S RO ey
M| & W | = © 0O 03] = & M| & W a =D

o o o o o o o o o o o o oo o oo o oo oo

W ~ND DO OEONU S EWNNDO RO 2O WN SO

schema_version action_type

c

D

o S S S O U A N S S U S A O e

E

mach_time
1 2777630000000
1 2777630000000
1 2777630000000
1 2777630000000
1 2777630000000
1 2777630000000
1 2777630000000
1 2777700000000
1 2777700000000
1 2777700000000
1 2777700000000
1 2777700000000
1 2777700000000
1 2777720000000
1 2777720000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000
1 2777750000000

version

N R N R N e e T T T T T T R B B I L LN [R

H

|_num time
0 2024-03-25T18-
1 2024-03-25T18:
2 2024-03-25T18~
3 2024-03-25T18:
4 2024-03-25T18:
5 2024-03-25T18:
6 2024-03-25T18:
7 2024-03-25T18-
8 2024-03-25T18~
9 2024-03-25T18
10 2024-03-25T18:
11 2024-03-25T18:-
12 2024-03-25T18:
13 2024-03-25T18
14 2024-03-25T18-
15 2024-03-25T18
16 2024-03-25T18
17 2024-03-25T18:
18 2024-03-25T18:
19 2024-03-25T18
20 2024-03-25T18:
21 2024-03-25T18
22 2024-03-25T18
23 2024-03-25T18:-

event type

20
20
20
20
13
13
25
20
20
20
20
13
13
13
25
13
25
20
20
20
20
13
13
25

J

action.resu

It.rest

o o o o o o o o o o o o oo o oo o oo oo

K

o oo o o o o o o o o o oo o o o o oo oo oo

L

30715
30715
30715
30715
30715
30715
30715
30715
30715
30715
30715
30715
30715
31438
30715
31438
31438
30715
30715
30715
30715
30715
30715
30715

M

N

action_result.rest thread.thread _id event. mmap.ma: event. mmap file.

o o o o o o o o o o o o oo o o o o o oo oo o

Future Goals / Research

more “malicious data”, we can overall raise the model accuracy and the
“malicious” prediction accuracy.

Our goal 1s to successtully collect clean data from various types of
malware to create a malware detection system. While we successfully
created one model for backdoor viruses, we’ll have to fully collect clean
data for the other types of malware and make similar models for them.

We also expect to apply multi-level classification later on in our project
to combine the dataframes for each model and to create a malware
detection system.

